Chemistry

SPRING EXAMINATION STUDY QUESTIONS

- (Chapter 12/Bonding) Draw Lewis structures for the following molecules:
 a) N₂
 b) CH₃Cl
 c) P₂H₂
 d) H₂SO₄
- 2. (Chapter 12/Bonding) For the compounds in *Question 1 a and b*, indicate their geometry and whether they are polar or nonpolar.
- 3. (Chapters 20/Organic Chemistry) Draw structures for each of the following compounds:
 - a) butane b) 1-pentanol c) an aromatic carboxylic acid
 - d) propyl amine e) 2,2,4-trimethyl,3-ethylhexane f) an isomer of (e)
- 4. (Chapters 20/Organic Chemistry) For each of the following, identify the type of polymer and draw the polymer from the monomer(s):

a)
$$H - D - \overset{\circ}{C} - CH - \overset{\circ}{C} - D - H$$
 and $H - D - \overbrace{-}^{-} D - H$

b) (polymer = Teflon)

$$F_{c=c}$$

- 5. (Chapter 13/Gases) What is the volume of a sample of gas containing 1.10 moles with a pressure of 1.80 atmospheres at 46°C?
- 6. (Chapter 13/Gases) A sample of gas occupies a volume of 5.60 liters at STP.
 - a) What is the pressure of this sample when it is allowed to expand to 18.0 liters at 78°C?
 - b) How many moles of gas are in the sample?
 - c) If the sample contains 7.50 grams of gas, what is the molar mass of this gas?
- 7. (Chapter 13/Gases) What is the density of ethane gas at 65°C and 1.50 atmospheres pressure?
- 8. (Combination)
 - a) Write a balanced chemical equation for the reaction between solid magnesium metal and hydrochloric acid (HCl) to form aqueous magnesium chloride and hydrogen gas.
 - b) What mass of magnesium is needed to react completely with 23.0 mL of 0.500 M HCl?
 - c) What mass of magnesium is needed to produce 4.61 liters of hydrogen gas at STP?
- 9. (Chapter 15/Solutions) You may use the equation below to solve the following problems: $\Delta T_f = 1.86^{\circ}C \times \text{moles solute particles/kg water}$
 - a) What is the freezing point of a solution containing 117 g NaCl in 500. g of water?
 - b) How many moles of a nonelectrolyte in 50.0 g of water are required for a solution to have a freezing point of -2.79°C?

- 10. (Chapter 15/Solutions) Review how to prepare a solution from either solid solute or by diluting a concentrated solution.
- 11. (Chapter 15/Solutions)
 - a) How many g of NaNO₃ are needed to make 157 ml of a 3.00 M NaNO₃ solution?
 - b) What is the concentration of NaNO₃ in a solution prepared by diluting 240 ml of 0.500 M NaNO₃ to 2.00 liters?
 - c) What is the mass percentage of a solution prepared by adding 2.00 moles of NaNO₃ to 1.00 kg of water?
- 12. (Chapter 17/Equilibrium)
 - a) For the system at equilibrium,

i) decreasing the volume

 $2 \operatorname{NO}_2(g) \rightleftharpoons \operatorname{N}_2\operatorname{O}_4(g) \quad \Delta \mathrm{H} = -58 \,\mathrm{kJ},$

what affect will each of the following have?

- iii) adding a catalyst
- ii) increasing the temperature iv) adding more N_2O_4
- b) Write an expression for *K* for this equilibrium. Calculate $[N_2O_4]$ if the $[NO_2] = 0.010$ M when the value for *K* is 10.0.
- 13. (Chapter 16/Acids & bases) Calculate the pH of each of the following solutions:
 - a) 0.010 M HClO₄
 - b) 1.00 g NaOH dissolved in 250. ml water
- 14. (Chapter 16/ Acids & bases) What is the molarity of an NH₃ solution if 12.0 liters of the NH₃ solution are neutralized by 360 ml of 4.00 M HCl?
- 15. (Chapter 18/Oxidation-Reduction) For the following oxidation-reduction equation: $NO_3^-(aq) + Cu(s) \rightarrow NO(g) + Cu^{2+}(aq)$
 - a) identify the oxidation and reduction half-equations and label them.
 - b) balance the total equation for the reaction (adding H^+ and H_2O as needed).
 - c) Which substance is acting as an oxidizing agent? as a reducing agent?
- 16. (Chapter 18/Electrochemistry) For the following reaction (unbalanced):

$$Al(s) + Pb^{2+}(aq) \rightarrow Al^{3+}(aq) + Pb(s)$$

- a) identify the oxidation and reduction half-equations and label them.
- b) balance the total equation for the reaction.
- c) draw a voltaic cell for this reaction, labelling anode, cathode, and the direction of flow of electrons, positive ions and negative ions.

Chemistry

ANSWERS TO SPRING EXAMINATION STUDY QUESTIONS

^{1. a)}
$$: N \equiv N$$
:
^{b)} $H - c - c + c$:
^{c)} $H - P = P - H$
^{d)} $H - D - S = 0 - H$
^l $H - D - S = 0 - H$
^l $H - D - S = 0 - H$
^l $H - D - S = 0 - H$

2. a) linear, nonpolar b) tetrahedral, polar

4. a) condensation polymer, polyester

b) addition polymer

$$F_{1} = F_{1} = F_{1$$

5. V = ?,
$$n = 1.10$$
 moles, P = 1.80 atm, T = 46 °C = 319 K.

$$V = \frac{nRT}{P} = \frac{1.10(0.08206)(319)}{1.80} = 16.0 \text{ L}$$

6. a)
$$V_1 = 5.60 \text{ L}; P_1 = 1 \text{ atm}, T_1 = 273 \text{ K}; P_2 = ?; V_2 = 18.0 \text{ L}; T_2 = 78 + 273 = 351 \text{ K}.$$

 $P_2 = P_1 \times \frac{V_1}{V_2} \times \frac{T_2}{T_1} = 1.00 \text{ atm} \times \frac{5.60 \text{ L}}{18.0 \text{ L}} \times \frac{351 \text{ K}}{273 \text{ K}} = 0.400 \text{ atm}$

b)
$$5.60 \text{ L} \times \frac{1 \text{ mol}}{22.4 \text{ L}} = 0.250 \text{ mol};$$
 or use $n = \frac{PV}{RT}$ at either T and P.
c) molar mass $= \frac{mass}{moles} = \frac{7.50 \text{ g}}{0.250 \text{ mol}} = -30.0 \text{ g/mol}$

7. ethane = C₂H₆; molar mass = 2(12.0) + 6 (1.0) = 30.0 g/mole; 65°C = 338 K
density =
$$\frac{molar \ mass}{molar \ volume}$$
; molar volume = volume when $n = 1$
 $V = \frac{nRT}{P} = \frac{1(0.08206)338}{1.50} = 18.5 L$; $d = \frac{mm}{mV} = \frac{30.0 \ g}{18.5 \ L} = 1.62 \ g/L$

8. a)
$$Mg(s) + 2 HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

b) $23.0 \text{ mL} \times \frac{0.500 \text{ mol}}{1 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{1 \text{ mol } Mg}{2 \text{ mol } HCl} \times \frac{24.3 \text{ g } Mg}{1 \text{ mol } Mg} = 0.140 \text{ g Mg}$
c) $4.61 \text{ L} \text{ H}_2 \times \frac{1 \text{ mol } H_2}{22.4 \text{ L} H_2} \times \frac{1 \text{ mol } Mg}{1 \text{ mol } H_2} \times \frac{24.3 \text{ g } Mg}{1 \text{ mol } Mg} = 5.00 \text{ g Mg}$

9. a) moles particles = 117 g NaCl×
$$\frac{1 \ mol \ NaCl}{58.5 \ g \ NaCl}$$
× $\frac{2 \ mol \ particles}{1 \ mol \ NaCl}$ = 4.00 mol particles
 $\Delta T_{\rm f} = 1.86 \times \frac{4.00 \ mol \ particles}{0.500 \ kg \ H_2 O} = 14.9^{\circ}{\rm C}; \ T_{\rm f} = 0 - 14.9^{\circ}{\rm C} = -14.9^{\circ}{\rm C}$
b) $\Delta T_{\rm f} = 2.79^{\circ}{\rm C}, \ moles = ?, \ 50.0 \ g = 0.0500 \ kg \ H_2 O$
 $\Delta T_{\rm f} = 1.86 \times \frac{mol \ particles}{kg \ H_2 O}; \ moles = \frac{\Delta T_f \times kg \ H_2 O}{1.86} = \frac{2.79 \times 0.0500}{1.86} = 0.0750 \ mol$

10. Check out Procedure from the "Solution Preparation" experiment.

11. a)
$$157 \text{ mL} \times \frac{3.00 \text{ mol } NaNO_3}{1 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{85.0 \text{ g } NaNO_3}{1 \text{ mol } NaNO_3} = 40.0 \text{ g } \text{ NaNO}_3$$

b) $V_1 \ge M_1 = V_2 \ge M_2$; $V_1 = 240 \text{ mL}$; $M_1 = 0.500 \text{ M}$; $V_2 = 2.00 \text{ L} = 2000 \text{ mL}$; $M_2 = ?$

$$M_{2} = \frac{V_{1} \times M_{1}}{V_{2}} = \frac{240 \ mL \times 0.500 \ M}{2000 \ mL} = 0.0600 \ M$$

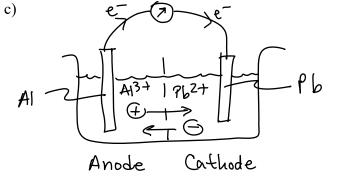
c) mass solute = 2.00 mol NaNO₃ × $\frac{85.0 \ g \ NaNO_{3}}{1 \ mol \ NaNO_{3}}$ = 170. g NaNO₃
mass solution = 1000 g H₂O + 170. g NaNO₃ = 1170 g
mass % = $\frac{mass \ solute}{mass \ solution}$ × 100% = $\frac{170 \ g \ NaNO_{3}}{1170 \ g \ solution}$ × 100% = 14.5 %

12. a) i) shift to right (shift to side with fewer moles); ii) shift to the left (shift in endothermic direction to use up heat); iii) no shift; iv) shift to left (use up some of the N₂O₄ added).

b)
$$K = \frac{[N_2O_4]}{[NO_2]^2}$$
; $[N_2O_4] = K \times [NO_2]^2 = 10.0 \ (0.010)^2 = 0.0010 \text{ M}$

13. a) HClO₄ = strong acid, so [HClO₄] = $[H^+]$ = 0.010 M = 1 x 10⁻² M; pH = 2.0

b) NaOH = strong base, so [NaOH] = [OH⁻] = $\frac{1 \text{ g NaOH}}{0.250 \text{ L}} \times \frac{1 \text{ mol NaOH}}{40.0 \text{ g NaOH}} = 0.100 \text{ M NaOH}$


 $[\rm OH^{-}] = 0.100 \ M = 1 \ x \ 10^{-1} \ M; \quad [\rm H^{+}] = 1 \ x \ 10^{-13} \ M; \quad pH = 13.0 \\ 14. \ V_A \ x \ M_A = V_B \ x \ M_B; \ V_A = 360 \ mL = 0.360 \ L; \ M_A = 4.00 \ M; \ V_B = 12.0 \ L; \ M_B = ?$

$$M_{\rm B} = \frac{V_A \times M_A}{V_B} = \frac{0.360 \ L \times 4.00 \ M}{12.0 \ L} = 0.120 \ {\rm M}$$

- 15. a) oxidation: $\operatorname{Cu}(s) \to \operatorname{Cu}^{2+}(aq) + 2 e^{-}$; reduction: $3 e^{-} + 4 \operatorname{H}^{+} + \operatorname{NO}_{3^{-}}(aq) \to \operatorname{NO}(g) + 2 \operatorname{H}_{2}\operatorname{O}(q)$
 - b) overall: $2 \operatorname{NO}_3^-(aq) + 3 \operatorname{Cu}(s) + 8 \operatorname{H}^+(aq) \rightarrow 2 \operatorname{NO}(g) + 3 \operatorname{Cu}^{2+}(aq) + 4 \operatorname{H}_2 O$
 - c) NO_3^- is the oxidizing agent (it's reduced); Cu is the reducing agent (it's oxidized).
- 16. a) oxidation: Al(s) \rightarrow Al³⁺(aq) + 3 e⁻; reduction: Pb²⁺(aq) + 2 e⁻ \rightarrow Pb(s)

b) 2 Al(s) + 3 Pb²⁺(aq) \rightarrow 2 Al³⁺(aq) + 3 Pb(s)

